3.3.96 \(\int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx\) [296]

3.3.96.1 Optimal result
3.3.96.2 Mathematica [A] (verified)
3.3.96.3 Rubi [A] (verified)
3.3.96.4 Maple [A] (verified)
3.3.96.5 Fricas [B] (verification not implemented)
3.3.96.6 Sympy [F]
3.3.96.7 Maxima [F]
3.3.96.8 Giac [B] (verification not implemented)
3.3.96.9 Mupad [F(-1)]

3.3.96.1 Optimal result

Integrand size = 26, antiderivative size = 113 \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {a \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{8 \sqrt {2} c^{5/2} f}+\frac {a \cos (e+f x)}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a \cos (e+f x)}{8 c f (c-c \sin (e+f x))^{3/2}} \]

output
1/2*a*cos(f*x+e)/f/(c-c*sin(f*x+e))^(5/2)-1/8*a*cos(f*x+e)/c/f/(c-c*sin(f* 
x+e))^(3/2)-1/16*a*arctanh(1/2*cos(f*x+e)*c^(1/2)*2^(1/2)/(c-c*sin(f*x+e)) 
^(1/2))/c^(5/2)/f*2^(1/2)
 
3.3.96.2 Mathematica [A] (verified)

Time = 2.12 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.56 \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {a \left (-2 \sqrt {c} (-7+\cos (2 (e+f x))-8 \sin (e+f x))+2 \sqrt {2} \arctan \left (\frac {\sqrt {-c (1+\sin (e+f x))}}{\sqrt {2} \sqrt {c}}\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^4 \sqrt {-c (1+\sin (e+f x))}\right )}{32 c^{5/2} f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {c-c \sin (e+f x)}} \]

input
Integrate[(a + a*Sin[e + f*x])/(c - c*Sin[e + f*x])^(5/2),x]
 
output
(a*(-2*Sqrt[c]*(-7 + Cos[2*(e + f*x)] - 8*Sin[e + f*x]) + 2*Sqrt[2]*ArcTan 
[Sqrt[-(c*(1 + Sin[e + f*x]))]/(Sqrt[2]*Sqrt[c])]*(Cos[(e + f*x)/2] - Sin[ 
(e + f*x)/2])^4*Sqrt[-(c*(1 + Sin[e + f*x]))]))/(32*c^(5/2)*f*(Cos[(e + f* 
x)/2] - Sin[(e + f*x)/2])^3*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[c - 
 c*Sin[e + f*x]])
 
3.3.96.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.07, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.346, Rules used = {3042, 3215, 3042, 3159, 3042, 3129, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a \sin (e+f x)+a}{(c-c \sin (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a \sin (e+f x)+a}{(c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3215

\(\displaystyle a c \int \frac {\cos ^2(e+f x)}{(c-c \sin (e+f x))^{7/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a c \int \frac {\cos (e+f x)^2}{(c-c \sin (e+f x))^{7/2}}dx\)

\(\Big \downarrow \) 3159

\(\displaystyle a c \left (\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\int \frac {1}{(c-c \sin (e+f x))^{3/2}}dx}{4 c^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a c \left (\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\int \frac {1}{(c-c \sin (e+f x))^{3/2}}dx}{4 c^2}\right )\)

\(\Big \downarrow \) 3129

\(\displaystyle a c \left (\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{4 c}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a c \left (\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{4 c}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^2}\right )\)

\(\Big \downarrow \) 3128

\(\displaystyle a c \left (\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {1}{2 c-\frac {c^2 \cos ^2(e+f x)}{c-c \sin (e+f x)}}d\left (-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{2 c f}}{4 c^2}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle a c \left (\frac {\cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {\text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} c^{3/2} f}+\frac {\cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^2}\right )\)

input
Int[(a + a*Sin[e + f*x])/(c - c*Sin[e + f*x])^(5/2),x]
 
output
a*c*(Cos[e + f*x]/(2*c*f*(c - c*Sin[e + f*x])^(5/2)) - (ArcTanh[(Sqrt[c]*C 
os[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])]/(2*Sqrt[2]*c^(3/2)*f) + C 
os[e + f*x]/(2*f*(c - c*Sin[e + f*x])^(3/2)))/(4*c^2))
 

3.3.96.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3129
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c 
+ d*x]*((a + b*Sin[c + d*x])^n/(a*d*(2*n + 1))), x] + Simp[(n + 1)/(a*(2*n 
+ 1))   Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] 
&& EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3159
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[2*g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f 
*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(2*m + p + 1 
)))   Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; 
FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] & 
& NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
 

rule 3215
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + 
 d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[ 
b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((Lt 
Q[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
3.3.96.4 Maple [A] (verified)

Time = 2.09 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.65

method result size
default \(\frac {a \left (\operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{2}\left (f x +e \right )\right ) \sqrt {2}\, c^{3}-2 \,\operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right ) \sqrt {2}\, c^{3}-2 \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {3}{2}} c^{\frac {3}{2}}-4 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {5}{2}}+\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{3}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{16 c^{\frac {11}{2}} \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(187\)
parts \(\frac {a \left (-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{2}\left (f x +e \right )\right ) c^{2}+6 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {3}{2}} \sin \left (f x +e \right )+6 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2} \sin \left (f x +e \right )-14 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {3}{2}}-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{32 c^{\frac {9}{2}} \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}+\frac {a \left (5 \,\operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{2}\left (f x +e \right )\right ) \sqrt {2}\, c^{3}+12 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c^{\frac {5}{2}}-10 \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {3}{2}} c^{\frac {3}{2}}-10 \,\operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right ) \sqrt {2}\, c^{3}+5 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{3}\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}}{32 c^{\frac {11}{2}} \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(384\)

input
int((a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x,method=_RETURNVERBOSE)
 
output
1/16*a*(arctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)^2 
*2^(1/2)*c^3-2*arctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))*sin(f 
*x+e)*2^(1/2)*c^3-2*(c*(sin(f*x+e)+1))^(3/2)*c^(3/2)-4*(c*(sin(f*x+e)+1))^ 
(1/2)*c^(5/2)+2^(1/2)*arctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2) 
)*c^3)*(c*(sin(f*x+e)+1))^(1/2)/c^(11/2)/(sin(f*x+e)-1)/cos(f*x+e)/(c-c*si 
n(f*x+e))^(1/2)/f
 
3.3.96.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 336 vs. \(2 (94) = 188\).

Time = 0.28 (sec) , antiderivative size = 336, normalized size of antiderivative = 2.97 \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {\sqrt {2} {\left (a \cos \left (f x + e\right )^{3} + 3 \, a \cos \left (f x + e\right )^{2} - 2 \, a \cos \left (f x + e\right ) - {\left (a \cos \left (f x + e\right )^{2} - 2 \, a \cos \left (f x + e\right ) - 4 \, a\right )} \sin \left (f x + e\right ) - 4 \, a\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} - 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) + 4 \, {\left (a \cos \left (f x + e\right )^{2} - 3 \, a \cos \left (f x + e\right ) - {\left (a \cos \left (f x + e\right ) + 4 \, a\right )} \sin \left (f x + e\right ) - 4 \, a\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{32 \, {\left (c^{3} f \cos \left (f x + e\right )^{3} + 3 \, c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) - 4 \, c^{3} f - {\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) - 4 \, c^{3} f\right )} \sin \left (f x + e\right )\right )}} \]

input
integrate((a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")
 
output
1/32*(sqrt(2)*(a*cos(f*x + e)^3 + 3*a*cos(f*x + e)^2 - 2*a*cos(f*x + e) - 
(a*cos(f*x + e)^2 - 2*a*cos(f*x + e) - 4*a)*sin(f*x + e) - 4*a)*sqrt(c)*lo 
g(-(c*cos(f*x + e)^2 - 2*sqrt(2)*sqrt(-c*sin(f*x + e) + c)*sqrt(c)*(cos(f* 
x + e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin 
(f*x + e) + 2*c)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f 
*x + e) - 2)) + 4*(a*cos(f*x + e)^2 - 3*a*cos(f*x + e) - (a*cos(f*x + e) + 
 4*a)*sin(f*x + e) - 4*a)*sqrt(-c*sin(f*x + e) + c))/(c^3*f*cos(f*x + e)^3 
 + 3*c^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x + e) - 4*c^3*f - (c^3*f*cos(f* 
x + e)^2 - 2*c^3*f*cos(f*x + e) - 4*c^3*f)*sin(f*x + e))
 
3.3.96.6 Sympy [F]

\[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx=a \left (\int \frac {\sin {\left (e + f x \right )}}{c^{2} \sqrt {- c \sin {\left (e + f x \right )} + c} \sin ^{2}{\left (e + f x \right )} - 2 c^{2} \sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )} + c^{2} \sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx + \int \frac {1}{c^{2} \sqrt {- c \sin {\left (e + f x \right )} + c} \sin ^{2}{\left (e + f x \right )} - 2 c^{2} \sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )} + c^{2} \sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx\right ) \]

input
integrate((a+a*sin(f*x+e))/(c-c*sin(f*x+e))**(5/2),x)
 
output
a*(Integral(sin(e + f*x)/(c**2*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x)**2 - 
 2*c**2*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x) + c**2*sqrt(-c*sin(e + f*x) 
 + c)), x) + Integral(1/(c**2*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x)**2 - 
2*c**2*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x) + c**2*sqrt(-c*sin(e + f*x) 
+ c)), x))
 
3.3.96.7 Maxima [F]

\[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {a \sin \left (f x + e\right ) + a}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")
 
output
integrate((a*sin(f*x + e) + a)/(-c*sin(f*x + e) + c)^(5/2), x)
 
3.3.96.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 218 vs. \(2 (94) = 188\).

Time = 0.40 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.93 \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {\frac {2 \, \sqrt {2} a \log \left (\frac {{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )}{c^{\frac {5}{2}} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\sqrt {2} a {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{c^{\frac {5}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {\sqrt {2} {\left (a \sqrt {c} - \frac {2 \, a \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}{c^{3} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{128 \, f} \]

input
integrate((a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")
 
output
-1/128*(2*sqrt(2)*a*log((cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*p 
i + 1/2*f*x + 1/2*e) + 1)^2)/(c^(5/2)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) 
 - sqrt(2)*a*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(c^(5/2)*(cos(-1/4*pi 
+ 1/2*f*x + 1/2*e) + 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + sqrt(2)*( 
a*sqrt(c) - 2*a*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*p 
i + 1/2*f*x + 1/2*e) + 1)^2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2/(c^3*( 
cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) 
)/f
 
3.3.96.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+a \sin (e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {a+a\,\sin \left (e+f\,x\right )}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

input
int((a + a*sin(e + f*x))/(c - c*sin(e + f*x))^(5/2),x)
 
output
int((a + a*sin(e + f*x))/(c - c*sin(e + f*x))^(5/2), x)